
Conditional Expectation

Chris Piech
CS109

Handout #30

May 6th, 2016

We have gotten to know a kind and gentle soul, conditional probability. And we now know another funky
fool, expectation. Let’s get those two crazy kids to play together.

Let X and Y be jointly random variables. Recall that the conditional probability mass function (if they are
discrete), and the probability density function (if they are continuous) are respectively:

pX |Y (x|y) =
pX ,Y (x,y)

pY (y)

fX |Y (x|y) =
fX ,Y (x,y)

fY (y)

We define the conditional expectation of X given Y = y to be:

E[X |Y = y] = ∑
x

xpX |Y (x|y)

E[X |Y = y] =
∫

∞

−∞

x fX |Y (x|y)dx

Where the first equation applies if X and Y are discrete and the second applies if they are continuous.

Properties of Conditional Expectation

Here are some helpful, intuitive properties of conditional expectation:

E[g(X)|Y = y] = ∑
x

g(x)pX |Y (x|y) if X and Y are discrete

E[g(X)|Y = y] =
∫

∞

−∞

g(x) fX |Y (x|y)dx if X and Y are continuous

E[
n

∑
i=1

Xi|Y = y] =
n

∑
i=1

E[Xi|Y = y]

E[E[X |Y]] = E[X]

Example 1

You roll two 6-sided dice D1 and D2. Let X = D1 +D2 and let Y = the value of D2. What is E[X |Y = 6]

E[X |Y = 6] = ∑
x

xP(X = x|Y = 6)

=

(
1
6

)
(7+8+9+10+11+12) =

57
6

= 9.5

Which makes intuitive sense since 6 + E[value of D1] = 6+3.5

Example 2

Consider the following code with random numbers:

int Recurse() {

int x = randomInt(1, 3); // Equally likely values

if (x == 1) return 3;

else if (x == 2) return (5 + Recurse());

else return (7 + Recurse());

}

Let Y = value returned by “Recurse”. What is E[Y]. In other words, what is the expected return value. Note
that this is the exact same approach as calculating the expected run time.

E[Y] = E[Y |X = 1]P(X = 1)+E[Y |X = 2]P(X = 2)+E[Y |X = 3]P(X = 3)

First lets calculate each of the conditional expectations:

E[Y |X = 1] = 3
E[Y |X = 2] = E[5+Y] = 5+E[Y]

E[Y |X = 3] = E[7+Y] = 7+E[Y]

Now we can plug those values into the equation. Note that the probability of X taking on 1, 2, or 3 is 1/3:

E[Y] = E[Y |X = 1]P(X = 1)+E[Y |X = 2]P(X = 2)+E[Y |X = 3]P(X = 3)
= 3(1/3)+(5+E[Y])(1/3)+(7+E[Y])(1/3)
= 15

Hiring Software Engineers

You are interviewing n software engineer candidates and will hire only 1 candidate. All orderings of candi-
dates are equally likely. Right after each interview you must decide to hire or not hire. You can not go back
on a decision. At any point in time you can know the relative ranking of the candidates you have already
interviewed.

The strategy that we propose is that we interview the first k candidates and reject them all. Then you hire the
next candidate that is better than all of the first k candidates. What is the probability that the best of all the n
candidates is hired for a particular choice of k? Let’s denote that result Pk(Best). Let X be the position in the
ordering of the best candidate:

Pk(Best) =
n

∑
i=1

Pk(Best|X = i)P(X = i)

=
1
n

n

∑
i=1

Pk(Best|X = i) since each position is equally likely

What is Pk(Best|X = i)? if i≤ k then the probability is 0 because the best candidate will be rejected without
consideration. Sad times. Otherwise we will chose the best candidate, who is in position i, only if the best
of the first i−1 candidates is among the first k interviewed. If the best among the first i−1 is not among the
first k, that candidate will be chosen over the true best. Since all orderings are equally likely the probability
that the best among the i−1 candidates is in the first k is:

k
i−1

if i > k

Now we can plug this back into our original equation:

Pk(Best) =
1
n

n

∑
i=1

Pk(Best|X = i)

=
1
n

n

∑
i=k+1

k
i−1

since we know Pk(Best|X = i)

≈ 1
n

∫ n

i=k+1

k
i−1

di By Riemann Sum approximation

=
k
n

ln(i = 1)
∣∣∣∣n
k+1

=
k
n

ln
n−1

k
≈ k

n
ln

n
k

If we think of Pk(Best) = k
n ln n

k as a function of k we can take find the value of k that optimizes it by taking
its derivative and setting it equal to 0. The optimal value of k is n/e. Where e is Euler’s number.

2

