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Conditional Expectation

We have gotten to know a kind and gentle soul, conditional probability. And we now know another funky
fool, expectation. Let’s get those two crazy kids to play together.

Let X and Y be jointly random variables. Recall that the conditional probability mass function (if they are
discrete), and the probability density function (if they are continuous) are respectively:
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We define the conditional expectation of X given Y =y to be:
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Where the first equation applies if X and Y are discrete and the second applies if they are continuous.

Properties of Conditional Expectation

Here are some helpful, intuitive properties of conditional expectation:
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Example 1

You roll two 6-sided dice D and D;. Let X = D| + D, and let Y = the value of D,. What is E[X|Y = 6]
EX|Y =6] = ZxP =x|Y =6)
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Which makes intuitive sense since 6 + E[value of Dj] =6+ 3.5

Example 2

Consider the following code with random numbers:

int Recurse() {
int x = randomInt(l, 3); // Equally likely values
if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse());



Let Y = value returned by “Recurse”. What is E[Y]. In other words, what is the expected return value. Note
that this is the exact same approach as calculating the expected run time.

E[Y]=EY|X=1PX=1)+E[Y|X=2]P(X=2)+E[Y|X =3]P(X =3)
First lets calculate each of the conditional expectations:

E[Y|lX=1]=3
E[Y|IX=2]=E[5+Y]=5+E[Y]
E[Y|X =3]=E[1+Y]=T+E[Y]
Now we can plug those values into the equation. Note that the probability of X taking on 1, 2, or 3 is 1/3:
E[Y]=E[Y|X=1]P(X=1)+E[Y|X =2]P(X =2)+E[Y|X =3]P(X =3)

=3(1/3)+ (S+EY]))(1/3)+ (T+E[Y])(1/3)
=15

Hiring Software Engineers

You are interviewing n software engineer candidates and will hire only 1 candidate. All orderings of candi-
dates are equally likely. Right after each interview you must decide to hire or not hire. You can not go back
on a decision. At any point in time you can know the relative ranking of the candidates you have already
interviewed.

The strategy that we propose is that we interview the first k candidates and reject them all. Then you hire the
next candidate that is better than all of the first k candidates. What is the probability that the best of all the n
candidates is hired for a particular choice of k? Let’s denote that result P, (Best). Let X be the position in the
ordering of the best candidate:
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What is P, (Best|X = i)? if i < k then the probability is 0 because the best candidate will be rejected without
consideration. Sad times. Otherwise we will chose the best candidate, who is in position i, only if the best
of the first i — 1 candidates is among the first £ interviewed. If the best among the first i — 1 is not among the
first k, that candidate will be chosen over the true best. Since all orderings are equally likely the probability
that the best among the i — 1 candidates is in the first k is:
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Now we can plug this back into our original equation:
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If we think of P (Best) = & In7 as a function of k we can take find the value of k that optimizes it by taking

n
its derivative and setting it equal to 0. The optimal value of k is n/e. Where e is Euler’s number.



